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The dynamics of a long, two-dimensional vapor bubble confined in the gap between two superheated or
subcooled parallel plates is analyzed theoretically. The unsteady expansion and/or contraction of the bubble is
driven by mass transfer between the liquid and the vapor. The analysis uses the approach developed by Wilson
et al. �J. Fluid Mech. 391, 1 �1999�� for a situation with “large” gaps and “small” superheating or subcooling
to consider a situation with small gaps and large superheating or subcooling in which the mass transfer from
or to the semicircular nose of the bubble is comparable to that from or to the thin liquid films on the plates. In
order to permit a �semi-� analytical treatment the analysis is restricted to low Prandtl number liquids. When
both plates are superheated the bubble always expands. In this case there are two possible constant-velocity
continuous-film solutions for the expansion of the bubble, namely, an unstable fast mode and a stable slow
mode. The evolution of the bubble is calculated numerically for a range of values of the parameters. In
particular, these calculations show that eventually the bubble expands either with the constant velocity of the
slow mode or exponentially. When both plates are subcooled the bubble always collapses to zero length in a
finite time. When one plate is subcooled and the other plate is superheated the situation is rather more
complicated. If the magnitude of the subcooling is less than that of the superheating then if the magnitude of
the subcooling is greater than a critical value then a variety of complicated behaviors �including the possibility
of an unexpected “waiting time” behavior in which the bubble remains almost stationary for a finite period of
time� can occur before the bubble eventually collapses to a finite length in an infinite time, whereas if it is less
than this critical value then the bubble always expands and eventually does so exponentially. If the magnitude
of the subcooling is greater than that of the superheating then the bubble always collapses to zero length in a
finite time.
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I. INTRODUCTION

As a consequence of its applications in a wide range of
areas including aerospace science, microelectromechanical
systems �MEMS�, compact heat exchangers, process intensi-
fication and chemical microreactors, there is currently con-
siderable research activity on microscale nucleate boiling. In
both MEMS and microactuators, geometrically constrained
vapor bubbles are used to move mechanical parts and to
pump liquid in microchannels by localized heating. In a
bubble jet printer, the ejection of ink is controlled by the
expansion and contraction of vapor bubbles. Flow boiling in
narrow channels is also used to generate vapor bubbles in
various refrigeration and power systems, and in cooling sys-
tems such as chemical reactors in which intensive heat gen-
eration takes place. Heat generating porous materials in
which vapor bubbles enter heated capillaries are also of in-
terest because of their relevance to the radioactive debris
caused by a serious nuclear accident.

Wilson, Davis and Bankoff �1� �hereafter referred to as
“WDB” for brevity� studied the dynamics of a long, two-

dimensional vapor bubble confined in the gap between two
equally superheated or subcooled parallel plates. Unlike
Bretherton’s �2� classical isothermal problem, in which the
steady translation of the bubble is driven by an externally
imposed pressure gradient, they studied the unsteady expan-
sion and/or contraction of a vapor bubble whose motion is
driven by mass transfer between the liquid and the vapor. As
in Bretherton’s problem, the velocity of the bubble deter-
mines the initial thickness of the thin films of liquid laid
down on both plates as the bubble expands, but unlike in
Bretherton’s problem the evaporation from and/or condensa-
tion onto those films �which may break up into disconnected
patches of liquid as they evaporate� determines the velocity
of expansion and/or contraction of the bubble, and so there is
a nonlinear coupling with a delay character between the pro-
files of the thin films and the overall dynamics of the bubble.
WDB investigated a particular parameter regime in which
mass transfer between the liquid and the vapor was domi-
nated by that from or to the thin liquid films on the plates. In
the present work we shall use the approach developed by
WDB to consider an alternative parameter regime in which
the mass transfer from or to the semicircular nose of the
bubble is comparable to that from or to the thin films.
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Ajaev and Homsy �3,4� studied a steady vapor bubble in a
rectangular channel with a prescribed temperature distribu-
tion on its walls in which there is a balance between evapo-
ration from the hotter parts of the bubble interface and con-
densation onto the colder parts, while Ajaev et al. �5�
considered a steady two-dimensional vapor bubble between
two parallel plates held at different temperatures, and then
investigated its dynamic response to temporally varying plate
temperatures. A review of the mathematical models for both
the steady shapes and dynamics of confined vapor bubbles
has recently been given by Ajaev and Homsy �6�.

In practice, there is often a net flow along the channel and
so numerical simulations of the unsteady growth of a vapor
bubble in a rectangular channel with prescribed temperatures
on its walls in this so-called “flow boiling” regime were ob-
tained by Mukherjee and Kandlikar �7�, while experimental
measurements of flow boiling in a partially heated channel
were recently reported by Wang and Cheng �8�.

Helpful overviews of the rapidly growing literature on
boiling and two-phase flow in microchannels have been
given by Kandlikar �9�, Thome �10�, and in the introduction
to the work by Kenning et al. �11�.

II. PROBLEM FORMULATION

Following WDB we consider a long, two-dimensional va-
por bubble of inviscid and incompressible vapor with density
��V� surrounded by its condensate and confined between two
parallel plates a distance 2d apart. The condensate is as-
sumed to be a Newtonian liquid with constant viscosity �,
kinematic viscosity �, density �, surface tension �, thermal
diffusivity �, and thermal conductivity k. The effect of grav-
ity is neglected. The two plates �hereafter referred to as the
“upper” and “lower” plates for simplicity� are held at �in
general different� uniform temperatures Tu and Tl, respec-
tively, which may be either above or below the saturation
temperature Ts.

We choose Cartesian coordinates �x ,y� so that the parallel
plates are at y= �d, and consider only bubbles that are sym-
metric about the y axis. For simplicity of presentation in
much of what follows we shall confine our attention to the
lower quarter of the bubble lying in x�0 and y	0; the
corresponding results in the upper quarter of the bubble lying
in x�0 and y�0 can be readily deduced. For convenience,
we write Tu=Ts+
Tu and Tl=Ts+
Tl and consider the three
specific situations sketched in Fig. 1, namely, �a� both plates
superheated, 
Tu ,
Tl�0, �b� both plates subcooled,

Tu ,
Tl	0, and �c� the upper plate subcooled and the lower
plate superheated, 
Tu	0 and 
Tl�0.

We nondimensionalize length with d, velocity with � /d,
time with d2 /�, pressure with � /d, and temperature differ-
ence from the saturation temperature with �
Tl�. The energy
balance at the interface gives the mass flux scale as
k�
Tl� /Ld, where L is the latent heat of vaporization. Here-
after, all quantities will be dimensionless unless stated other-
wise. In what follows we shall retain 
Tl for clarity of pre-
sentation, although the choice of nondimensionalization
means that it can be set equal to either plus or minus unity
without loss of generality.

The velocity �u ,v�, where u=u�x ,y , t� and v=v�x ,y , t�,
pressure p= p�x ,y , t� and temperature T=T�x ,y , t� of the liq-
uid satisfy the usual continuity, Navier-Stokes and energy
equations,

ux + vy = 0, �1�

C�ut + uux + vuy� = − px + C�uxx + uyy� , �2�

C�vt + uvx + vvy� = − py + C�vxx + vyy� , �3�

P�Tt + uTx + vTy� = Txx + Tyy , �4�

where C=��2 /�d is the capillary number, P=� /� is the
Prandtl number, and t denotes time. Similar equations hold in
the vapor. However, since the ratios of density, viscosity and
thermal conductivity of the vapor to those of the liquid are
typically small, we shall neglect all dynamic processes in the
vapor. In the spirit of the classical Boussinesq approxima-
tion, the vapor density is retained only where it multiplies the
large vapor velocity. This so-called “one-sided” model devel-
oped by Burelbach et al. �12� allows us to obtain simple
boundary conditions for the liquid without solving for the
flow and heat transfer in the vapor.
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FIG. 1. The geometry of the three problems studied: �a� both
plates superheated, �b� both plates subcooled and �c� the upper plate
subcooled and the lower plate superheated.
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At the lower liquid-vapor interface y=−1+h�x , t� the lo-
cal mass-balance condition gives

− EJ = �ht + uhx − v��1 + hx
2�−1/2, �5�

where J=J�x , t� denotes the mass flux at the interface due to
evaporation or condensation and E=k�
Tl� /L�� is the non-
dimensional evaporation number. The local energy-balance
condition at the interface yields

J = �Txhx − Ty��1 + hx
2�−1/2, �6�

while the normal-stress condition is

− p + 2C�vy + hx
2ux − hx�uy + vx���1 + hx

2�−1

= hxx�1 + hx
2�−3/2, �7�

and the tangential-stress condition can be written as

�1 − hx
2��uy + vx� − 2hx�ux − vy� = 0. �8�

The boundary conditions at the plates y= �1 are no slip, u
=v=0, and prescribed temperature, T=
Tu at the upper plate
y=1 and T=
Tl at the lower plate y=−1.

One further �constitutive� equation is required in order to
close the system, and this is taken to be a linearized version
of the nonequilibrium condition relating the interfacial mass
flux to the interfacial temperature

KJ = T , �9�

where

K =
kTs

3/2

�L2��V�d
�2�Rg

Mw
�1/2

�10�

is a nondimensional kinetic parameter which measures the
degree of nonequilibrium at the interface, with
Rg=8.31 J mol−1 K−1 denoting the gas constant, Mw the mo-
lecular weight of the vapor, and � the accommodation coef-
ficient �see, for example, Burelbach et al. �12�, the more
detailed discussion by Panzarella �13�, and the extensive re-
view of literature concerning the evaporation and condensa-
tion coefficients of water by Marek and Straub �14��.

Finally, global conservation of mass of liquid and vapor
means that the rate of change of the mass of the bubble is
equal to the total mass flux into the bubble and so

2U = DE� Jds , �11�

where U=U�t� is the velocity of the bubble, D=� /��V� is the
ratio of the liquid density to vapor density, and the integral is
over the entire liquid-vapor interface in x�0, parameterized
by its arclength s.

III. ASYMPTOTIC SOLUTION IN THE LIMIT C\0

In the present work we shall follow Bretherton �2�, WDB,
and many other previous authors by considering the limit of
strong surface tension �i.e., the limit of small capillary num-
ber C→0� in which the bubble almost entirely fills the gap
between the plates and an expanding bubble leaves behind

thin liquid films on the plates as it grows. In this limit the
solution is composed of three different kinds of region. Spe-
cifically, the asymptotic solution in x�0 consists of a
“capillary-statics” region occupying the gap between the
plates when R�t�	x	R�t�+1 in which capillary effects
dominate and the leading-order solution for the liquid-vapor
interface is a semicircular cap of radius unity that fits exactly
between the plates, two small and thin “transition” regions of
length O�C1/3�
1 and thickness O�C2/3�
1 near x=R�t�
and y= �d �i.e., where the semicircular cap touches the
plates� in which viscous effects become significant and �in
the case of an expanding bubble� thin films of thickness
O�C2/3�
1 are laid down on the plates, and two “thin-film”
regions occupying 0	x	R�t� in which there are thin films
of thickness O�C2/3�
1 on the plates. The �unknown� length
of the thin-film regions R�t� is calculated from the �un-
known� velocity of the bubble U�t� which depends on the
total mass flux according to Eq. �11�.

In their analysis WDB investigated a parameter regime in
which D=O�C−2/3��1, E=O�C4/3�
1, and K=O�C2/3�
1.
In this situation the leading order total mass flux is deter-
mined solely by the mass flux from or to the thin-film re-
gions, and the higher order contributions to the mass flux
from the capillary-statics and transition regions can be ne-
glected at leading order. In the present work we investigate
an alternative parameter regime in which D=O�C−2/3��1 as
before but E=O�C2/3�
1 and K=O�1�. In this situation the
mass fluxes from the capillary-statics region and the thin-
film regions both contribute to the leading order total mass
flux, and only the higher order contribution from the transi-
tion regions can be neglected at leading order. For clarity, we

write D= D̂C−2/3 and E= ÊC2/3, where D̂ and Ê are both O�1�
in the limit C→0.

A. Capillary-statics region

The calculation of the mass flux from the capillary-statics
region involves determining the temperature distribution in
the liquid in x�R by solving the energy Eq. �4� subject to
the boundary conditions �5� and �6� at the �known� liquid-
vapor interface and prescribed temperature on the plates. In
general, this is a difficult numerical problem involving solv-
ing for both u and T in a reference frame moving with un-
known velocity U�t� given by Eq. �11�. We can, however,
make progress in the special case of small Prandtl number
P=o�1� �i.e., when thermal diffusion is much stronger than
viscous diffusion� in which case the problem for T decouples
from that for u and depends on only 
Tu, 
Tl and K �and
not, for example, on D or E�. In this case the contribution to
the integral in Eq. �11� from the capillary-statics region is
given by �
Tu+
Tl�S�K�, where straightforward numerical
calculations �undertaken using a standard finite element
method implemented using the software package COMSOL

Multiphysics, formerly FEMLAB �15�� reveal that the coeffi-
cient S=S�K� is a monotonically decreasing function of K
satisfying S=O�K−1/2�→� as K→0+, S�1�=1.2391, and
S=O�K−1�→0 as K→�. Figure 2 shows numerically calcu-
lated values of S�K� plotted as a function of K. While the
assumption that P=o�1� permits the present �semi-� analyti-
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cal treatment it does, of course, mean that the present analy-
sis is formally restricted to low Prandtl number liquids such
as the liquid and alkali metals and their alloys with values of
P in the range 0.005 to 0.03 which are, for example, used as
coolants in nuclear reactors �see, for example, Saravanan and
Kandaswamy �16��. We would, however, anticipate that
some of the qualitative features described here will also oc-
cur for liquids �such as, for example, water� with larger val-
ues of P.

B. Transition regions

A straightforward modification of the analysis presented
by WDB reveals that the leading-order solution for the
liquid-vapor interface is simply the classical isothermal so-
lution and so can be obtained in the usual way �see, for
example, Bretherton �2��. In particular, the solution in the
thin-film regions yields an expression for the initial thickness
of the film as it is laid down on the plates when the bubble
expands �i.e., when U�0�, namely, h=cU2/3C2/3, where c is
a numerically determined constant. When the bubble retreats
�i.e., when U	0� the liquid on the plates is “swept up” by
the transition regions and so the details of the solution in the
transition regions are unimportant.

C. Thin-film regions

Calculating the mass flux from the thin-film regions in-
volves determining the temporal and spatial evolution of the
profile of and the temperature distribution within the thin
films on the plates. Unless they are swept up by a retreating
bubble, on a superheated plate these films will thin before
eventually drying out locally �possibly breaking up into dis-
connected patches of liquid as they do so� due to evaporation
to the vapor, whereas on a subcooled plate they will always
remain continuous as they thicken due to condensation from
the vapor. In order to analyze this behavior, and hence deter-
mine the total mass flux, for the thin film on the lower plate
�a similar analysis applies for the film on the upper plate� we

introduce appropriately rescaled variables �denoted by an
overbar� given by

v̄ = C−2/3v, ȳ = C−2/3�y + 1�, h̄ = C−2/3h . �12�

In the limit C→0 we obtain the leading-order lubrication
equations

ux + v̄ȳ = 0, �13�

uȳȳ = 0, �14�

0 = pȳ , �15�

Tȳȳ = 0, �16�

subject to the leading-order boundary conditions

− ÊJ = h̄t + uh̄x − v̄ , �17�

0 = Tȳ , �18�

p = 0, �19�

uȳ = 0, �20�

KJ = T �21�

at the lower bubble interface ȳ= h̄�x , t�, and u= v̄=0 and T
=
Tl on the lower plate ȳ=0. The leading-order solution is
simply u= v̄=0 together with T=
Tl and J=
Tl /K, meaning
that the liquid is quiescent and at the same uniform tempera-
ture as the plate and that the flux is constant, and so Eq. �17�
becomes

h̄t +
Ê
Tl

K
= 0. �22�

Hence, the profile of the film in the thin-film region is given
by

h̄�x,t� = h̄0�x� −
Ê
Tl

K
�t − t0�x�� , �23�

where if x	L then h̄0= h̄0�x� denotes the initial profile of the

thin film at t= t0=0, while if x�L then h̄0= h̄0�x�=cU2/3 de-
notes the thickness of the film laid down at position x at time
t= t0�x�=R−1�x�, where L=R�0� �which may be zero or posi-
tive� is the initial length of the thin films on the plates at
t=0. Equation �23� shows that if the plate is superheated
�i.e., if 
Tl�0� then liquid evaporates from the thin film
which dries out locally at position x at time t= t0

+Kh̄0�x� / Ê
Tl, while if the plate is subcooled �i.e., if 
Tl
	0� then vapor condenses onto the thin film and local dry
out never occurs.

For ease of presentation, we rescale h̄ and Ê with c and D̂
with c−1 in order to remove the constant c from the leading-
order problem, and remove all of the overbars and hats on
the variables. Furthermore, for simplicity in what follows we
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FIG. 2. Numerically calculated values of S plotted as a function
of K.
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set E=K=1 and �unless stated otherwise� D=1 in all of the
numerical results reported in the present work.

IV. BOTH PLATES SUPERHEATED (�Tu�0 AND �Tl=1)

If both plates are superheated �i.e., if 
Tu�0 and

Tl=1� then the evaporation from the capillary-statics region
and any films present in the thin-film regions on both plates
always causes the bubble to expand, and the dynamics of the
expansion are governed by Eq. �11�, which takes the form

U =
dR

dt
=

DE

2K
��
Tu + 
Tl�KS + 
TuLu + 
TlLl� � 0,

�24�

where Lu=Lu�t� and Ll=Ll�t� �0�Lu ,Ll�R� denote the total
lengths of film on the upper and lower plates in x�0, re-
spectively. Note that the three terms on the right hand side of
Eq. �24� represent the contributions to the expansion due to
the evaporation from the capillary-statics region, the evapo-
ration from any film present in the thin-film region on the
upper plate and the evaporation from any film present in the
thin-film region on the lower plate, respectively.

A. Delay-equation formulation for continuous films

The liquid films laid down on the plates as the bubble
expands will, in general, break up into disconnected patches
of liquid as they dry. However, it is still very informative to
investigate the behavior in the special case in which the films
remain continuous as they dry �i.e., the special case in which
there are no disconnected patches of liquid� analytically be-
fore analyzing the more general situation numerically. For
continuous films we denote the position of the front of the
film �where h=h0=U2/3� by x=R��u+Tu��u��=R��l+Tl��l��,
the position of the back of the film on the upper plate �where
h=0� by x=R��u�, and the position of the back of the film on
the lower plate �where again h=0� by x=R��l�, where
Tu=Tu��u� and Tl=Tl��l�, given by

Tu��u� =
Kh0

E
Tu
=

KU��u�2/3

E
Tu
�25�

and

Tl��l� =
Kh0

E
Tl
=

KU��l�2/3

E
Tl
�26�

are the lengths of time it takes for the liquid deposited on the
upper and lower plates at times t=�u and t=�l, respectively,
to dry out. Adopting this new notation, Eq. �24� can be writ-
ten as

U��u + Tu��u�� =
DE

2K
	�
Tu + 
Tl�KS + 
TuLu��u + Tu��u��

+ 
TlLl��l + Tl��l��
 , �27�

or, equivalently, as

U��u + Tu��u�� =
DE

2K ��
Tu + 
Tl�KS + 
Tu�
�u

�u+Tu��u�

U��̂�d�̂

+ 
Tl�
�l

�l+Tl��l�

U��̂�d�̂� . �28�

Equation �28� is an integrodelay equation for U with noncon-
stant delays Tu and Tl which depend on the solution for U at
times t=�u and t=�l, respectively, according to Eqs. �25� and
�26�.

B. Constant-velocity continuous-film solutions
and their stability

Equation �28� permits an exact continuous-film solution
with constant velocity U0��0� and the corresponding con-
stant delays Tu0 and Tl0 given by

Tu0 =
KU0

2/3

E
Tu
and Tl0 =

KU0
2/3

E
Tl
. �29�

Substituting U=U0, Tu=Tu0 and Tl=Tl0 into Eq. �28� shows
that U0 satisfies

U0 =
DE

2K
��
Tu + 
Tl�KS + �
TuTu0 + 
TlTl0�U0�

=
DE

2
�
Tu + 
Tl�S + DU0

5/3. �30�

Figure 3 shows U0 plotted as a function of D for a range of
values of 
Tu, and shows that for 0	D	Dc there are two
branches of positive solutions, namely, a “fast” mode satis-
fying U0�U0c and a “slow” mode satisfying 0	U0	U0c,
but that there are no positive solutions for D�Dc, where the
critical values Dc and U0c are given by
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FIG. 3. The velocity of the constant-velocity continuous-film
solutions U0 plotted as a function of D for 
Tu=0.2, 0.4, 0.6, 0.8, 1,
2, 3, 4 and 5.
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Dc = �3

5
�3/5� 4

5E�
Tu + 
Tl�S
�2/5

�31�

and

U0c = � 3

5Dc
�3/2

= �3E�
Tu + 
Tl�S
4

�3/5

. �32�

In particular, the slow mode satisfies U0
DE�
Tu
+
Tl�S /2→0+ and the fast mode satisfies U0
D−3/2→� in
the limit D→0+, while both modes satisfy U0−U0c=O�Dc
−D�1/2 in the limit D→Dc

−. For both modes the profiles of
the films on both plates are linear in x. On the lower plate the
profile has slope E
Tl /KU0 and increases from the value
h=0 at the back

x = R�t − Tl0� = U0t −
KU0

5/3

E
Tl
�33�

to the value h=U0
2/3 at the front x=R�t�=U0t according to

h = U0
2/3 +

E
Tl

KU0
�x − U0t� . �34�

The corresponding results for the profile of the film on the
upper plate are obtained by replacing Tl0 with Tu0 and 
Tl
with 
Tu.

The stability of both modes can be determined by writing
U=U0+U1, Tu=Tu0+Tu1 and Tl=Tl0+Tl1 and linearizing for
small U1, Tu1 and Tl1. From Eqs. �25� and �26� the first-order
delays Tu1=Tu1��u� and Tl1=Tl1��l� are given by

Tu1��u� =
2KU1��u�

3E
TuU0
1/3 �35�

and

Tl1��l� =
2KU1��l�

3E
TlU0
1/3 , �36�

and from Eq. �28� the equation for U1 is found to be

U1��u + Tu0� =
DE

2K ��
TuTu1 + 
TlTl1�U0

+ 
Tu�
�u

�u+Tu0

U1��̂�d�̂ + 
Tl�
�l

�l+Tl0

U1��̂�d�̂� .

�37�

Equation �37� is an integrodelay equation for U1 with
�known� constant delays Tu0 and Tl0, which has an exact
solution in the form

U1�t� � exp�E�

K
t� , �38�

where the temporal growth rate �=��U0 ,D ,
Tu ,
Tl� satis-
fies the algebraic equation

2�

D
�1 −

DU0
2/3

3
�exp�−

�U0
2/3


Tu
� + exp�−

�U0
2/3


Tl
���

= 
Tu�1 − exp�−
�U0

2/3


Tu
�� + 
Tl�1 − exp�−

�U0
2/3


Tl
�� .

�39�

Figure 4 shows � plotted as a function of D for a range of
values of 
Tu, and shows that ��0 for the fast mode and
�	0 for the slow mode. In particular, for the fast mode

�
 �̂D→0+ in the limit D→0+, where �̂= �̂�
Tu ,
Tl� sat-
isfies the algebraic equation
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FIG. 4. The temporal growth rate of the constant-velocity
continuous-film solutions � plotted as a function of D for �a� 
Tu

=1,2 , . . . ,5 and �b� 
Tu=0.2,0.4, . . . ,1.
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2�̂�1 −
1

3
�exp�−

�̂


Tu
� + exp�−

�̂


Tl
���

= 
Tu�1 − exp�−
�̂


Tu
�� + 
Tl�1 − exp�−

�̂


Tl
�� ,

�40�

and for the slow mode

� 

max�
Tu,
Tl�

U0
2/3 log�DU0

2/3

3
� = O�D−2/3 log D� → − �

�41�

in the limit D→0+ �17�, while for both modes
�=O�Dc−D�1/2→0 in the limit D→Dc

−. Thus the fast mode
with U0�U0c is always unstable, while the slow mode with
0	U0	U0c is always stable. These results are qualitatively
different from the corresponding results obtained by WDB
who found a single unstable mode with velocity U0=D−3/2

�corresponding to the limit D→0+ of the present fast mode�
for all values of D �18�.

C. No initial films

If there are no films on the plates initially �i.e., if
L=R�0�=0� then the initial expansion of the bubble is driven
solely by the evaporation from the capillary-statics region.
Until the film laid down on the hotter plate starts to dry out
at x=0 at t=KU0

2/3 /E max�
Tu ,
Tl�, where U0=U�0� is the
initial velocity of the bubble at t=0, we have Lu=Ll=R, and
so from Eq. �24�

R = KS�exp�DE�
Tu + 
Tl�
2K

t� − 1� . �42�

In particular, the initial expansion of the bubble is given by
U=U0+U1t+O�t2�, where U0��0� and U1��0� are given

U0 =
DE�
Tu + 
Tl�S

2
�43�

and

U1 = �DE�
Tu + 
Tl�
2

�2 S

K
. �44�

Solving Eq. �24� numerically for a range of values of D
reveals that the eventual behavior of the bubble is qualita-
tively different for 0	D	Dc and D�Dc, where the critical
value Dc is given by Eq. �31�. Specifically, we find that for
0	D	Dc the bubble eventually expands with the constant
velocity of the stable slow mode calculated in Sec. IV B
above but that for D�Dc no constant-velocity solutions ex-
ists and the bubble eventually expands exponentially accord-
ing to

R = O�exp�DE�
Tu + 
Tl�
2K

t�� → � �45�

as t→�. These results are illustrated in Fig. 5 which shows
two examples of the numerically calculated evolution of the

bubble in the case when both plates are superheated equally,
i.e., when 
Tu=
Tl=1. Specifically, Fig. 5�a� illustrates that
in the case D=0.3 �	Dc�0.4682� the bubble velocity ap-
proaches the limiting value of U0�0.4514 �	U0c�1.4560�
in the limit t→�, while Fig. 5�b� illustrates that in the case
D=0.8��Dc� the bubble eventually expands exponentially
according to Eq. �45�. Note that the “corners” in U discern-
ible in Fig. 5�a� are not the result of numerical or plotting
inaccuracies, but are caused by the local dry out of the films
on the plates, which results in a discontinuous change in the
local mass flux and hence a discontinuous change in the
slope of U as a function of t. For example, the corner high-
lighted in Fig. 5�a� corresponds to the instant t�0.5170 at
which the films of thickness U0

2/3�0.5170 laid down at
x=0 on both plates at t=0 dry out creating dry patches at
x=0 on both plates. Since the thickness of the films laid
down on the plates, and hence their subsequent contribution
to the total mass flux, depends on the current value of U,
“echoes” of this event occur in the subsequent evolution of
the bubble.

D. Uniform initial films

If there are uniform films of length L and thickness H on
both plates initially �i.e., if R�0�=L and h0=H for 0�x�L�
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FIG. 5. The velocity of the bubble U plotted as a function of
time t in the cases �a� D=0.3 �	Dc�0.4682� and �b� D=0.8
��Dc� in the absence of any initial films when both plates are
superheated equally, i.e., when 
Tu=
Tl=1.
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then the initial expansion of the bubble is driven by the
evaporation from both the capillary-statics region and the
initial films. For simplicity in what follows we set H=1 in all
of the numerical results reported in the present work. When
the initial films on the upper and lower plates dry out at

t = tcu =
KH

E
Tu
and t = tcl =

KH

E
Tl
, �46�

this causes discontinuous drops in U of magnitude
DEL
Tu /2K and DEL
Tl /2K at those instants, respectively,
and this may occur either before or after the film laid down
on the hotter plate starts to dry out at x=L at
t=KU0

2/3 /E max�
Tu ,
Tl�. Until the first dry out occurs we
again have Lu=Ll=R and hence

R = �KS + L�exp�DE�
Tu + 
Tl�
2K

t� − KS . �47�

In particular, the initial expansion is given by U=U0+U1t
+O�t2�, where U0��0� and U1��0� are given

U0 =
DE�
Tu + 
Tl�

2K
�KS + L� �48�

and

U1 = �DE�
Tu + 
Tl�
2K

�2

�KS + L� . �49�

Note that in the special case L=0 Eqs. �47�–�49� reduce to
the corresponding expressions in the case of no initial films
given by Eqs. �42�–�44� in Sec. IV D above. Solving Eq. �24�
numerically for a range of values of D reveals that the even-
tual behavior of the bubble is again qualitatively different for
different values of D, but that the presence of the initial films
makes the situation a little more complicated than when they
are absent. Specifically, we find that while a stable constant-
velocity solution is again possible for all values of D in the
range 0	D	Dc, it is eventually attained only when D is

less than a critical value denoted by D��	Dc�. Thus for 0
	D	D� the bubble eventually expands with the constant
velocity of the stable slow mode calculated in Sec. IV B
above, while for D�D� we find that the bubble eventually
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FIG. 6. A plot of the �L ,D� parameter plane showing how the
numerically calculated curve D=D� divides the region in which the
bubble eventually expands with the constant velocity of the slow
mode from the region in which it eventually expands exponentially.
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FIG. 7. The velocity of the bubble U plotted as a function of
time t in the cases �a� D=0.25 �	D��0.2890�, �b� D=0.3 �D�

	D	Dc�0.3245� and �c� D=0.6 ��Dc� with initial films of
length L=10 when both plates are superheated unequally with

Tu=4 and 
Tl=1. In part �c� the insert shows an enlarged version
of the plot for 0� t�1.5. Note the very different vertical scales
used in parts �a�, �b� and �c�.
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expands exponentially according to Eq. �45�. In general, the
value of D� has to be calculated numerically. Figure 6 shows
D� plotted as a function of L, and, in particular, shows that
D�→Dc

− as L→0+. Figure 6 also shows how the curve D
=D� divides the �L ,D� parameter plane into the region in
which the bubble eventually expands with the constant ve-
locity of the slow mode from the region in which it eventu-
ally expands exponentially. These results are illustrated in
Fig. 7 which shows three examples of the numerically cal-
culated evolution of the bubble in the case L=10 when

Tu=4 and 
Tl=1. Specifically, Fig. 7 shows the evolution
in the cases �a� D=0.25 �	D��0.2890�, �b� D=0.3
�D�	D	Dc�0.3245� and �c� D=0.6��Dc�. In particular,
Fig. 7�b� shows the evolution in a case in which a stable
constant-velocity solution exists but is not achieved. In addi-
tion to the corners in U arising from the local dry out of the
films like those seen previously in Fig. 5�a�, Fig. 7 also
clearly shows the discontinuous drops in U arising from the
dry out of the initial films on the upper and lower plates at
tcu=0.25 and tcl=1, respectively.

Figure 8 shows the profile of the film on the lower plate in
the case D=0.25 at various times. In particular, Fig. 8 shows
the disappearance of the uniform initial film of length
L=10 at time t= tcl=1 and the presence of one disconnected
patch of liquid at t=3 and two disconnected patches of liquid
at t=3.5 created as the nonuniform film which is laid down
on the plate as the bubble expands dries out locally.

V. BOTH PLATES SUBCOOLED (�Tu	0 AND �Tl=−1)

If both plates are subcooled �i.e., if 
Tu	0 and

Tl=−1� then the condensation onto the capillary-statics re-
gion and the thin-film regions on both plates always causes
the bubble to contract, and the dynamics of the contraction
are governed by Eq. �11�, which takes the simple form

U =
dR

dt
=

DE�
Tu + 
Tl�
2K

�KS + R� 	 0. �50�

Note that the two terms on the right hand side of Eq. �50�
represent the contributions to the contraction due to the con-

densation onto the capillary-statics region and the condensa-
tion onto the thin-film regions on the upper and lower plates,
respectively.

If there are no initial films �i.e., if L=R�0�=0� then R
immediately becomes negative �which is, of course, physi-
cally impossible�, i.e., the model fails immediately. However,
if there are uniform initial films of length L �i.e., if R�0�=L�
then the bubble collapses exponentially according to Eq.
�47�. In particular, the initial contraction of the bubble is
given by U=U0+U1t+O�t2�, where U0�	0� and U1��0� are
given by Eqs. �48� and �49�. Eventually, the model fails
when the bubble reaches zero length at the finite time t= t�

given by

t� = −
2K

DE�
Tu + 
Tl�
log�1 +

L

KS
� . �51�

Figure 9 shows the evolution of the bubble in the case
L=10 when both plates are subcooled equally, i.e., when

Tu=
Tl=−1, in which case the model fails when the
bubble reaches zero length at t= t�=2.2050.

VI. UPPER PLATE SUBCOOLED AND LOWER PLATE
SUPERHEATED (�Tu	0 AND �Tl=1)

If the upper plate is subcooled and the lower plate is su-
perheated �i.e., if 
Tu	0 and 
Tl=1� then the net effect of
the evaporation from and condensation onto the capillary-
statics region, the condensation onto the thin-film region on
the upper plate and the evaporation from any film present in
the thin-film region on the lower plate may cause the bubble
to expand or contract, and the dynamics are governed by Eq.
�11�, which takes the form

FIG. 8. The profile of the film on the lower plate in the case
D=0.25 with initial films of length L=10 when both plates are
superheated unequally with 
Tu=4 and 
Tl=1 at t=0, 0.5, 1, 3 and
3.5.
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FIG. 9. The velocity of the bubble U plotted as a function of
time t for initial films of length L=10 when both plates are sub-
cooled equally, i.e., when 
Tu=
Tl=−1. Note that the curve stops
when the bubble reaches zero length at t= t�=2.2050.
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U =
dR

dt
=

DE

2K
��
Tu + 
Tl�KS + 
TuR + 
TlLl� , �52�

where Ll=Ll�t� �0�Ll�R� is again the total length of film
on the lower plate in x�0. Note that the three terms on the
right hand side of Eq. �52� represent the contributions to the
expansion or contraction due to the evaporation from and
condensation onto the capillary-statics region, the condensa-
tion onto the thin-film region on the subcooled upper plate
and the evaporation from any film present in the thin-film
region on the superheated lower plate, respectively.

A. Magnitude of subcooling and superheating
equal (−�Tu=�Tl=1)

If the magnitude of the subcooling is equal to that of the
superheating �i.e., the special case −
Tu=
Tl=1� then the
behavior of the bubble depends on whether or not any initial
films are present. If there are no initial films then the evapo-
ration from the lower half of the semicircular cap is exactly
balanced by the condensation onto the upper half of the cap,
and hence U�0, i.e., the bubble remains stationary for all
time. However, if there are uniform initial films of length L
then the bubble remains stationary until the initial film on the
superheated plate dries out at t= tcl given by Eq. �46�, and
thereafter for t� tcl the bubble collapses exponentially to
zero length in an infinite time according to

R = L exp�−
DE�− 
Tu�

2K
�t − tcl�� . �53�

Figure 10 shows the evolution of the bubble in the case
L=10. In particular, Fig. 10 shows both the discontinuous
drop in U of magnitude DEL
Tl /2K=5 at t= tcl=1 when the
initial film on the superheated plate dries out, and the subse-
quent exponential decay of U.

B. Magnitude of subcooling less than that of superheating
(−�Tu	�Tl=1)

If the magnitude of the subcooling is less than that of the
superheating �i.e., if −
Tu	
Tl=1� then the bubble always
expands initially, but its ultimate fate depends on whether or
not the magnitude of the subcooling −
Tu��0� is greater or
less than a critical value, denoted by −
Tuc��0�. Specifi-
cally, if �
Tuc�	 �
Tu�	
Tl=1 then once all of the film on
the superheated plate has eventually disappeared �i.e., when
Ll=0� the bubble collapses exponentially to the finite length
R=R��0 given by

R� =
KS�
Tu + 
Tl�

�− 
Tu�
�54�

according to

R − R� = O�exp�−
DE�− 
Tu�

2K
t�� �55�

as t→�. On the other hand if �
Tu�	 �
Tuc� then the bubble
always expands and eventually does so exponentially accord-
ing to Eq. �45� as t→�. Note that until the film laid down on
the superheated plate starts to dry out at x=0 at t
=KU0

2/3 /E
Tl, the evolution of the bubble is again described
by Eqs. �42�–�44� when there are no initial films, and by Eqs.
�47�–�49� when there are uniform initial films.

If there are no initial films the value of −
Tuc is found
numerically to be 0.0097. Figure 11 shows the numerically
calculated evolution of the bubble in the case 
Tu=−0.5,
which satisfies �
Tuc�	 �
Tu�	
Tl=1.

If there are uniform initial films the value of −
Tuc de-
pends on the values of L and H. Figure 12 shows how the
numerically calculated curve −
Tu=−
Tuc divides the
�L ,−
Tu� parameter plane into the region in which the
bubble eventually expands exponentially from the region in
which it eventually collapses to the finite length R�. In par-
ticular, Fig. 12 shows that −
Tuc increases monotonically
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FIG. 10. The velocity of the bubble U plotted as a function of
time t for initial films of length L=10 when the upper plate is
subcooled and the lower plate is superheated with equal magnitude,
i.e., when −
Tu=
Tl=1.
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FIG. 11. The velocity of the bubble U plotted as a function of
time t in the absence of any initial films when 
Tu=−0.5 and

Tl=1.
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from 0.0097 when L=0 towards 0.2911 in the limit L→�.
Figure 13 shows the numerically calculated evolution of the
bubble in the case L=50 when 
Tu=−0.26 and 
Tu=−0.31,
both of which satisfy �
Tuc�	 �
Tu�	
Tl=1, where −
Tuc
�0.2527. In particular, Fig. 13 shows that the dynamics can
be considerably more complicated than those in the case of
no initial film. Specifically, Fig. 13�b� shows that an unex-
pected “waiting time” behavior in which the bubble remains
almost stationary for a finite period of time can occur.

C. Magnitude of subcooling greater than that of superheating
(−�Tu��Tl=1)

If the magnitude of the subcooling is greater than that of
the superheating �i.e., if −
Tu�
Tl=1� then the bubble al-
ways contracts.

If there are no initial films then the model fails immedi-
ately as in Sec. V above. However, if there are uniform initial
films of length L then Ll=R until all the film on the super-
heated plate dries out at t= tcl given by Eq. �46�, and so for
0� t	 tcl the bubble contracts exponentially according to Eq.
�47�, reaching the length R=Rc=R�tcl� at t= tcl. Thereafter for
t� tcl the bubble collapses exponentially according to

R = R� + �Rc − R��exp�−
DE�− 
Tu�

2K
�t − tcl�� , �56�

where R�	0 �which is now negative� is again given by Eq.
�54�, until eventually the model fails when the bubble
reaches zero length at the finite time t= t� given by

t� = tcl +
2K

DE�− 
Tu�
log�1 +

Rc

�− R��� . �57�

VII. PHYSICAL VALUES

In order to illustrate typical physical situations in which
the analysis of WDB and the present analysis apply, it is

informative to consider the typical physical parameter values
for water and mercury listed in Table I and the corresponding
values of the nondimensional parameters P, C, D, E, and K
listed in Table II. Both analyses are based on the assumption
that the capillary number is small, C
1, and hence that
d�O�10−9� m for water and d�O�10−10� m for mercury,
and that the density ratio is large, D=O�C−2/3��1. The
analysis of WDB applies when P=O�1�, K=O�C2/3�
1 and
E=O�C4/3�
1 and so corresponds to physical situations
with “large” gaps and “small” superheating or subcooling
whereas the present analysis applies when P=o�1�,
K=O�1� and E=O�C2/3�
1 and so corresponds to physical
situations with “small” gaps and “large” superheating or sub-
cooling. Thus �assuming for definiteness that the accommo-
dation coefficient �=1 �19�� while the analysis of WDB is
applicable to water when d=O�10−4� m and �
Tl�
=O�10−4� K, the present analysis is applicable to mercury
when d=O�10−6� m and �
Tl�=O�10−2� K. In particular,
setting K=1 and E=C2/3 for mercury corresponds to choos-
ing d=6�10−6 m and �
Tl�=0.03 K, and the present theo-
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FIG. 13. The velocity of the bubble U plotted as a function of
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retical prediction for the �dimensional� initial expansion or
contraction velocity of a bubble between equally subcooled
or superheated plates is �U0 /d, where U0 is given by Eq. �43�
and �48�, which corresponds to a rather modest initial veloc-
ity of approximately 0.04 m s−1 for a bubble with no initial
films to a much faster initial velocity of approximately
5 m s−1 for a bubble with initial films of �dimensional�
length L=10−3 m.

VIII. CONCLUSIONS

In this paper the dynamics of a long, two-dimensional
vapor bubble confined in the gap between two superheated or
subcooled parallel plates was analyzed theoretically. The
analysis used the approach developed by WDB to consider a
situation with small gaps and large superheating or subcool-
ing in which the mass transfer from or to the semicircular
nose of the bubble is comparable to that from or to the thin
liquid films on the plates. In order to permit a
�semi-� analytical treatment the analysis was restricted to low
Prandtl number liquids.

When both plates are superheated the bubble always ex-
pands. In this case there are two possible constant-velocity
continuous-film solutions for the expansion of the bubble

when 0	D	Dc, namely, an unstable fast mode with veloc-
ity U0 satisfying U0�U0c and a stable slow mode with ve-
locity U0 satisfying 0	U0	U0c, but none for D�Dc, where
the critical values Dc and U0c are given by Eqs. �31� and
�32�, respectively. The evolution of the bubble was calcu-
lated numerically for a range of values of the parameters. In
particular, these calculations showed that when
0	D	D���Dc� the bubble eventually expands with the
constant velocity of the slow mode whereas when D�D� it
eventually expands exponentially according to Eq. �45�. Nu-
merically calculated values of D� are shown in Fig. 6. This
behavior is qualitatively different from that in the situation
investigated by WBD in which there is only a single unstable
constant-velocity continuous-film solution �corresponding to
the limit D→0+ of the present fast mode� and all bubbles
always either expand indefinitely or stop in a finite time.

When both plates are subcooled the bubble always col-
lapses to zero length at the finite time t= t� given by Eq. �51�.
This behavior is also qualitatively different from that in the
situation investigated by WBD in which all bubbles always
collapse to zero length asymptotically in infinite time.

When one plate is subcooled and the other plate is super-
heated the situation is rather more complicated. If the mag-
nitude of the subcooling −
Tu is less than that of the super-
heating 
Tl then if �
Tuc�	 �
Tu�	
Tl then a variety of

TABLE I. Typical physical parameter values for water and mercury.

Physical quantity Symbol Value for water Value for mercury Units

Saturation temperature TS 373 630 K

Density � 960 1.3�104 kg m−3

Density of vapor ��V� 0.6 4 kg m−3

Viscosity � 3�10−7 7�10−8 m2 s−1

Thermal conductivity k 0.68 8.3 Wm−1 K−1

Thermal diffusivity � 1.7�10−7 4�10−6 m2 s−1

Latent heat of vaporization L 2.3�106 3�105 J kg−1

Surface tension � 0.06 0.5 N m−1

Molecular weight MW 0.018 0.2 kg mol−1

TABLE II. Values of the nondimensional parameters P, C, D, E, and K for water and mercury corre-
sponding to the typical physical parameter values listed in Table I.

Nondimensional parameter Symbol Definition Value for water Value for mercury

Prandtl number P

�

� 1.8 0.02

Capillary number C

��2

�d

1.4 � 10−9

d

1.3 � 10−10

d

Density ratio D

�

��V� 1.6�103 3.25�103

Evaporation number E

k�
Tl�
L�� 10−3�
Tl� 0.03�
Tl�

Kinetic parameter K

kTS
3/2

�L2��V�d
�2�Rg

MW
�1/2 8 � 10−8

�d

6 � 10−6

�d
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complicated behaviors �including the possibility of an unex-
pected “waiting time” behavior in which the bubble remains
almost stationary for a finite period of time� can occur before
the bubble eventually collapses to the finite length R=R�

given by Eq. �54� in an infinite time, whereas if �
Tu�
	 �
Tuc� then the bubble always expands and eventually does
so exponentially according to Eq. �45�. Numerically calcu-
lated values of −
Tuc are shown in Fig. 12. If the magnitude
of the subcooling is greater than that of the superheating then
the bubble always collapses to zero length at the finite time

t= t� given by Eq. �57�. This behavior is also qualitatively
different from that in the situation investigated by WBD in
which all bubbles always eventually collapse to zero length
asymptotically in infinite time.
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